User:IssaRice/Logical induction notation: Difference between revisions

From Machinelearning
No edit summary
No edit summary
 
(19 intermediate revisions by the same user not shown)
Line 1: Line 1:
This is in user space because it's not really about machine learning.
{| class="sortable wikitable"
{| class="sortable wikitable"
|-
|-
! Term !! Notation !! Type !! Definition !! Notes
! Term !! Notation !! Type !! Definition !! Notes
|-
|-
| <math>\mathcal F</math>-combination || <math>A</math> || <math>\mathcal S \cup \{0,1\} \to \mathcal F_n</math> || || Function application of an <math>\mathcal F</math>-combination uses square brackets instead of parentheses. Why? As far as I can tell, this is because each coefficient is in <math>\mathcal F</math> so is itself a function. This means we have two senses of "application": we can pick out the specific coefficient we want (square brackets), or we can apply each coefficient to return something (parentheses).
| <math>\mathcal F</math>-combination || <math>A</math> || <math>\mathcal S \cup \{1\} \to \mathcal F_n</math> || || Function application of an <math>\mathcal F</math>-combination uses square brackets instead of parentheses. Why? As far as I can tell, this is because each coefficient is in <math>\mathcal F</math> so is itself a function. This means we have two senses of "application": we can pick out the specific coefficient we want (square brackets), or we can apply each coefficient to return something (parentheses).
|-
| Holdings from <math>T</math> against <math>\overline{\mathbb P}</math> (a <math>\mathbb Q</math>-combination)|| <math>T(\overline{\mathbb P})</math> || <math>\mathcal S \cup \{1\} \to \mathbb Q</math> || ||
|-
|-
| Holdings from <math>T</math> against <math>\overline{\mathbb P}</math> (a <math>\mathbb Q</math>-combination)|| <math>T(\overline{\mathbb P})</math> || <math>\mathcal S \cup \{0,1\} \to \mathbb Q</math> || ||
| Trading strategy || <math>T</math> || <math>\mathcal S \cup \{1\} \to \mathcal{E\!F}</math> || ||
|-
|-
| Trading strategy || <math>T</math> || <math>\mathcal S \cup \{1\} \to \mathcal{EF}</math> || ||
| Feature || <math>\alpha</math> || <math>[0,1]^{\mathcal S \times \mathbb N^{+}} \to \mathbb R</math> or equivalently <math>(\mathcal S \times \mathbb N^{+} \to [0,1]) \to \mathbb R</math> or equivalently <math>\mathcal F</math> || ||
|}
|}


Example of a 5-strategy given on p. 18 of the paper:
Example of a 5-strategy given on p. 18 of the paper:


:<math>\left[(\neg\neg\phi)^{*5} -\phi^{*5}\right] \cdot (\phi - \phi^{*5}) + \left[\phi^{*5} - (\neg \neg \phi)^{*5}\right] \cdot \left(\neg\neg\phi - (\neg\neg\phi)^{*5}\right)</math>
:<math>\underbrace{\left[(\neg\neg\phi)^{*5} -\phi^{*5}\right]}_{\xi_1} \cdot (\phi - \phi^{*5}) + \underbrace{\left[\phi^{*5} - (\neg \neg \phi)^{*5}\right]}_{\xi_2} \cdot \left(\neg\neg\phi - (\neg\neg\phi)^{*5}\right)</math>


Since the coefficients are in <math>\mathcal F_5</math>, this is an <math>\mathcal F_5</math>-combination. Let's call this 5-strategy <math>T_5</math>. We can pick out the coefficient for the <math>\phi</math> term like <math>T_5[\phi] = (\neg\neg\phi)^{*5} -\phi^{*5}</math>. But since each coefficient is a feature (which is a function), we can also apply each coefficient to some valuation sequence <math>\overline{\mathbb V}</math>, like this:
Since the coefficients (<math>\xi_1</math> and <math>\xi_2</math>) are in <math>\mathcal{E\!F}_5</math>, this is an <math>\mathcal{E\!F}_5</math>-combination. Let's call this 5-strategy <math>T_5</math>. We can pick out the coefficient for the <math>\phi</math> term like <math>T_5[\phi] = (\neg\neg\phi)^{*5} -\phi^{*5}</math>. But since each coefficient is a feature (which is a function), we can also apply each coefficient to some valuation sequence <math>\overline{\mathbb V}</math>, like this:


:<math>T_5(\overline{\mathbb V}) = \left[(\neg\neg\phi)^{*5}(\overline{\mathbb V}) -\phi^{*5}(\overline{\mathbb V})\right] \cdot (\phi - \phi^{*5}(\overline{\mathbb V})) + \left[\phi^{*5}(\overline{\mathbb V}) - (\neg \neg \phi)^{*5}(\overline{\mathbb V})\right] \cdot \left(\neg\neg\phi - (\neg\neg\phi)^{*5}(\overline{\mathbb V})\right)</math>
:<math>T_5(\overline{\mathbb V}) = \left[(\neg\neg\phi)^{*5}(\overline{\mathbb V}) -\phi^{*5}(\overline{\mathbb V})\right] \cdot (\phi - \phi^{*5}(\overline{\mathbb V})) + \left[\phi^{*5}(\overline{\mathbb V}) - (\neg \neg \phi)^{*5}(\overline{\mathbb V})\right] \cdot \left(\neg\neg\phi - (\neg\neg\phi)^{*5}(\overline{\mathbb V})\right)</math>


Now each coefficient is a real number, so <math>T_5(\overline{\mathbb V})</math> is an <math>\mathbb R</math>-combination. Note that since <math>T_5\colon \mathcal S \cup \{1\} \to \mathcal F_5</math> is a function that takes a sentence or the number <math>1</math> and <math>\overline{\mathbb V}</math> is a valuation sequence (''not'' a sentence or number), there appears to be a type error in writing <math>T_5(\overline{\mathbb V})</math>. What is going on is that we aren't evaluating <math>T_5</math> at <math>\overline{\mathbb V}</math>; rather, we are evaluating ''each coefficient'' of <math>T_5</math>, to convert the range of <math>T_5</math> from <math>\mathcal F_5</math> to <math>\mathbb R</math>.
Now each coefficient is a real number, so <math>T_5(\overline{\mathbb V})</math> is an <math>\mathbb R</math>-combination. Note that since <math>T_5\colon \mathcal S \cup \{1\} \to \mathcal{E\!F}_5</math> is a function that takes a sentence or the number <math>1</math> and <math>\overline{\mathbb V}</math> is a valuation sequence (''not'' a sentence or number), there appears to be a type error in writing <math>T_5(\overline{\mathbb V})</math>. What is going on is that we aren't evaluating <math>T_5</math> at <math>\overline{\mathbb V}</math>; rather, we are evaluating ''each coefficient'' of <math>T_5</math>, to convert the range of <math>T_5</math> from <math>\mathcal{E\!F}_5</math> to <math>\mathbb R</math>.
 
To summarize the types:
 
* <math>T_5 \colon \mathcal S \cup \{1\} \to \mathcal{E\!F}_5</math>
* <math>T_5[\phi] \in \mathcal{E\!F}_5</math> in other words <math>T_5[\phi] \colon [0,1]^{\mathcal S\times \mathbb N^{+}} \to \mathbb R</math>
* <math>T_5(\overline{\mathbb V}) \colon \mathcal S \cup \{1\} \to \mathbb R</math>
 
If <math>T = c + \xi_1\phi_1 + \cdots + \xi_k\phi_k \colon \mathcal S \cup \{1\} \to \mathcal{E\!F}_n</math>, then
 
:<math>\mathbb V(T) = c + \xi_1\mathbb V(\phi_1) + \cdots + \xi_k\mathbb V(\phi_k) \in \mathcal{E\!F}_n</math>
 
and
 
:<math>T(\overline{\mathbb V}) = c(\overline{\mathbb V})+ \xi_1(\overline{\mathbb V})\phi_1 + \cdots + \xi_k(\overline{\mathbb V})\phi_k \colon \mathcal S \cup \{1\} \to \mathbb R</math>
 
and
 
:<math>\mathbb W(T(\overline{\mathbb V})) = c(\overline{\mathbb V})+ \xi_1(\overline{\mathbb V})\mathbb W(\phi_1) + \cdots + \xi_k(\overline{\mathbb V})\mathbb W(\phi_k) \in \mathbb R</math>
 
I think <math>\mathbb W(T(\overline{\mathbb V})) = (\mathbb W(T))(\overline{\mathbb V})</math> but the former notation seems to be preferred in the paper.
 
==See also==
 
* https://machinelearning.subwiki.org/wiki/User:IssaRice/Logical_inductor_construction


==External links==
==External links==

Latest revision as of 00:51, 25 June 2019

Term Notation Type Definition Notes
F-combination A S{1}Fn Function application of an F-combination uses square brackets instead of parentheses. Why? As far as I can tell, this is because each coefficient is in F so is itself a function. This means we have two senses of "application": we can pick out the specific coefficient we want (square brackets), or we can apply each coefficient to return something (parentheses).
Holdings from T against P¯ (a Q-combination) T(P¯) S{1}Q
Trading strategy T S{1}EF
Feature α [0,1]S×N+R or equivalently (S×N+[0,1])R or equivalently F

Example of a 5-strategy given on p. 18 of the paper:

[(¬¬ϕ)*5ϕ*5]ξ1(ϕϕ*5)+[ϕ*5(¬¬ϕ)*5]ξ2(¬¬ϕ(¬¬ϕ)*5)

Since the coefficients (ξ1 and ξ2) are in EF5, this is an EF5-combination. Let's call this 5-strategy T5. We can pick out the coefficient for the ϕ term like T5[ϕ]=(¬¬ϕ)*5ϕ*5. But since each coefficient is a feature (which is a function), we can also apply each coefficient to some valuation sequence V¯, like this:

T5(V¯)=[(¬¬ϕ)*5(V¯)ϕ*5(V¯)](ϕϕ*5(V¯))+[ϕ*5(V¯)(¬¬ϕ)*5(V¯)](¬¬ϕ(¬¬ϕ)*5(V¯))

Now each coefficient is a real number, so T5(V¯) is an R-combination. Note that since T5:S{1}EF5 is a function that takes a sentence or the number 1 and V¯ is a valuation sequence (not a sentence or number), there appears to be a type error in writing T5(V¯). What is going on is that we aren't evaluating T5 at V¯; rather, we are evaluating each coefficient of T5, to convert the range of T5 from EF5 to R.

To summarize the types:

  • T5:S{1}EF5
  • T5[ϕ]EF5 in other words T5[ϕ]:[0,1]S×N+R
  • T5(V¯):S{1}R

If T=c+ξ1ϕ1++ξkϕk:S{1}EFn, then

V(T)=c+ξ1V(ϕ1)++ξkV(ϕk)EFn

and

T(V¯)=c(V¯)+ξ1(V¯)ϕ1++ξk(V¯)ϕk:S{1}R

and

W(T(V¯))=c(V¯)+ξ1(V¯)W(ϕ1)++ξk(V¯)W(ϕk)R

I think W(T(V¯))=(W(T))(V¯) but the former notation seems to be preferred in the paper.

See also

External links