User:IssaRice/Summary of counting techniques: Difference between revisions
No edit summary |
No edit summary |
||
| (8 intermediate revisions by the same user not shown) | |||
| Line 4: | Line 4: | ||
! Description !! Set representing counting problem !! number of ways to count | ! Description !! Set representing counting problem !! number of ways to count | ||
|- | |- | ||
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A\}</math> || <math>n^k</math> | | Pick <math>k</math> things from <math>A</math> with replacement || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A\}</math> || <math>n^k</math> | ||
|- | |- | ||
| || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A\}</math> || | | || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A\}</math> || <math>\sum_{i=1}^k \binom n i</math> | ||
|- | |||
| || <math display="inline">\{ f : A \to \mathbf N \mid \sum_{a \in A} f(a) = k\}</math> (multisets with cardinality <math>k</math>) || | |||
|- | |||
| || <math>\{\{a_1, \ldots, a_n\} : a_1,\ldots, a_n \in A\}</math> || <math>\sum_{i=1}^n \binom n i = 2^n - 1</math> (a quick way to see this identity is that we want the power set without the empty set) | |||
|- | |- | ||
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>P(n,k) = \frac{n!}{(n-k)!} = n(n-1)\cdots (n-(k+1))</math> | | || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>P(n,k) = \frac{n!}{(n-k)!} = n(n-1)\cdots (n-(k+1))</math> | ||
|- | |||
| || <math>\{(a_1, \ldots, a_n) : a_1,\ldots, a_n \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>P(n,n) = n!</math> | |||
|- | |- | ||
| || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>\binom n k = P(n,k)/(k!) = \frac{n!}{k!(n-k)!}</math> | | || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>\binom n k = P(n,k)/(k!) = \frac{n!}{k!(n-k)!}</math> | ||
|- | |- | ||
| || <math>\{(a,b) : a \in A \text{ and } b \in B\}</math> || | | || <math>\{(a,b) : a \in A \text{ and } b \in B\}</math> || <math>nm</math> | ||
|- | |- | ||
| || | | || <math>\{\{a,b\} : a \in A \text{ and } b \in B\}</math> || | ||
|} | |} | ||
Latest revision as of 02:38, 14 August 2019
Let be a set with elements, and let be a set with elements.
| Description | Set representing counting problem | number of ways to count |
|---|---|---|
| Pick things from with replacement | ||
| (multisets with cardinality ) | ||
| (a quick way to see this identity is that we want the power set without the empty set) | ||