User:IssaRice/Summary of counting techniques: Difference between revisions

From Machinelearning
No edit summary
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 4: Line 4:
! Description !! Set representing counting problem !! number of ways to count
! Description !! Set representing counting problem !! number of ways to count
|-
|-
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A\}</math> || <math>n^k</math>
| Pick <math>k</math> things from <math>A</math> with replacement || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A\}</math> || <math>n^k</math>
|-
|-
| || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A\}</math> || <math>\sum_{i=1}^k \binom n i</math>
| || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A\}</math> || <math>\sum_{i=1}^k \binom n i</math>
|-
| || <math display="inline">\{ f : A \to \mathbf N \mid \sum_{a \in A} f(a) = k\}</math> (multisets with cardinality <math>k</math>) ||
|-
| || <math>\{\{a_1, \ldots, a_n\} : a_1,\ldots, a_n \in A\}</math> || <math>\sum_{i=1}^n \binom n i = 2^n - 1</math> (a quick way to see this identity is that we want the power set without the empty set)
|-
|-
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>P(n,k) = \frac{n!}{(n-k)!} = n(n-1)\cdots (n-(k+1))</math>
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>P(n,k) = \frac{n!}{(n-k)!} = n(n-1)\cdots (n-(k+1))</math>
|-
| || <math>\{(a_1, \ldots, a_n) : a_1,\ldots, a_n \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>P(n,n) = n!</math>
|-
|-
| || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>\binom n k = P(n,k)/(k!) = \frac{n!}{k!(n-k)!}</math>
| || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>\binom n k = P(n,k)/(k!) = \frac{n!}{k!(n-k)!}</math>
Line 14: Line 20:
| || <math>\{(a,b) : a \in A \text{ and } b \in B\}</math> || <math>nm</math>
| || <math>\{(a,b) : a \in A \text{ and } b \in B\}</math> || <math>nm</math>
|-
|-
| ||  
| ||  <math>\{\{a,b\} : a \in A \text{ and } b \in B\}</math> ||
|}
|}

Latest revision as of 02:38, 14 August 2019

Let be a set with elements, and let be a set with elements.

Description Set representing counting problem number of ways to count
Pick things from with replacement
(multisets with cardinality )
(a quick way to see this identity is that we want the power set without the empty set)