User:IssaRice/Computability and logic/Eliezer Yudkowsky's Löb's theorem puzzle: Difference between revisions

From Machinelearning
Line 13: Line 13:
When translating to logic notation, it becomes obvious that the application of the deduction theorem is illegitimate, because we don't actually have <math>\mathsf{PA} \cup \{\Box C \to C\} \vdash C</math>. This is the initial answer that Larry D'Anna gives in comments.
When translating to logic notation, it becomes obvious that the application of the deduction theorem is illegitimate, because we don't actually have <math>\mathsf{PA} \cup \{\Box C \to C\} \vdash C</math>. This is the initial answer that Larry D'Anna gives in comments.


But now, suppose we define <math>\mathsf{PA}' := \mathsf{PA} \cup \{\Box C \to C\} \vdash C</math>, and walk through the proof of Löb's theorem for this new theory <math>\mathsf{PA}'</math>. Then we would obtain the following implication: if <math>\mathsf{PA}' \vdash \Box C \to C</math>, then <math>\mathsf{PA}' \vdash C</math>. But clearly, <math>\mathsf{PA}' \vdash \Box C \to C</math> since <math>\Box C \to C</math> is one of the axioms of <math>\mathsf{PA}'</math>. Therefore by modus ponens, we have <math>\mathsf{PA}' \vdash C</math>, i.e. <math>\mathsf{PA}\cup\{\Box C \to C\} \vdash C</math>. Now we can apply the deduction theorem to obtain <math>\mathsf{PA} \vdash (\Box C \to C) \to C</math>.
But now, suppose we define <math>\mathsf{PA}' := \mathsf{PA} \cup \{\Box C \to C\}</math>, and walk through the proof of Löb's theorem for this new theory <math>\mathsf{PA}'</math>. Then we would obtain the following implication: if <math>\mathsf{PA}' \vdash \Box C \to C</math>, then <math>\mathsf{PA}' \vdash C</math>. But clearly, <math>\mathsf{PA}' \vdash \Box C \to C</math> since <math>\Box C \to C</math> is one of the axioms of <math>\mathsf{PA}'</math>. Therefore by modus ponens, we have <math>\mathsf{PA}' \vdash C</math>, i.e. <math>\mathsf{PA}\cup\{\Box C \to C\} \vdash C</math>. Now we can apply the deduction theorem to obtain <math>\mathsf{PA} \vdash (\Box C \to C) \to C</math>.


==Translating the Löb's theorem back to logic==
==Translating the Löb's theorem back to logic==

Revision as of 03:27, 10 February 2019

original link: https://web.archive.org/web/20160319050228/http://lesswrong.com/lw/t6/the_cartoon_guide_to_l%C3%B6bs_theorem/

current LW link: https://www.lesswrong.com/posts/ALCnqX6Xx8bpFMZq3/the-cartoon-guide-to-loeb-s-theorem

Translating the puzzle using logic notation

Löb's theorem shows that if PACC, then PAC.

The deduction theorem says that if PA{H}F, then PAHF.

Applying the deduction theorem to Löb's theorem gives us PA(CC)C.

When translating to logic notation, it becomes obvious that the application of the deduction theorem is illegitimate, because we don't actually have PA{CC}C. This is the initial answer that Larry D'Anna gives in comments.

But now, suppose we define PA':=PA{CC}, and walk through the proof of Löb's theorem for this new theory PA'. Then we would obtain the following implication: if PA'CC, then PA'C. But clearly, PA'CC since CC is one of the axioms of PA'. Therefore by modus ponens, we have PA'C, i.e. PA{CC}C. Now we can apply the deduction theorem to obtain PA(CC)C.

Translating the Löb's theorem back to logic

http://yudkowsky.net/assets/44/LobsTheorem.pdf

Since the solution to the puzzle refers back to the proof of Löb's theorem, we first translate the proof from the cartoon version back to logic:

  1. PAL(LC)
  2. PACC
  3. PA(LC)(LC)
  4. PAL(LC)
  5. PALL
  6. PALC
  7. PALC
  8. PA(LC)
  9. PAL
  10. PAC