User:IssaRice/Computability and logic/Bounded computation trick: Difference between revisions
No edit summary |
No edit summary |
||
| Line 8: | Line 8: | ||
* Peter Smith's proof that K is recursively enumerable (theorem 3.8) | * Peter Smith's proof that K is recursively enumerable (theorem 3.8) | ||
* the second graph principle | * the second graph principle | ||
* goedel's beta function | |||
Revision as of 22:24, 24 March 2019
Instead of saying "compute this thing" you can say "compute this thing for steps", then let vary. This trick makes the computation bounded, which is useful in certain situations.
Some examples of this trick in use:
- showing that a recursively enumerable set is primitive-recursively enumerable
- Kleene's T predicate and normal form
- Peter Smith's proof that domain of an algorithm implies effectively enumerable (theorem 3.5)
- Peter Smith's proof that K is recursively enumerable (theorem 3.8)
- the second graph principle
- goedel's beta function