|
|
| Line 12: |
Line 12: |
| | || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>\binom n k = P(n,k)/(k!) = \frac{n!}{k!(n-k)!}</math> | | | || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>\binom n k = P(n,k)/(k!) = \frac{n!}{k!(n-k)!}</math> |
| |- | | |- |
| | || <math>\{(a,b) : a \in A \text{ and } b \in B\}</math> || | | | || <math>\{(a,b) : a \in A \text{ and } b \in B\}</math> || <math>nm</math> |
| |- | | |- |
| | || | | | || |
| |} | | |} |
Revision as of 02:16, 14 August 2019
Let
be a set with
elements, and let
be a set with
elements.
| Description |
Set representing counting problem |
number of ways to count
|
|
 |
|
|
 |
|
|
 |
|
|
 |
|
|
 |
|
|
|