|
|
| Line 7: |
Line 7: |
| |- | | |- |
| | || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A\}</math> || <math>\sum_{i=1}^k \binom n i</math> | | | || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A\}</math> || <math>\sum_{i=1}^k \binom n i</math> |
| | |- |
| | | || <math>\{\{a_1, \ldots, a_n\} : a_1,\ldots, a_n \in A\}</math> || <math>\sum_{i=1}^n \binom n i = 2^n - 1</math> |
| |- | | |- |
| | || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>P(n,k) = \frac{n!}{(n-k)!} = n(n-1)\cdots (n-(k+1))</math> | | | || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>P(n,k) = \frac{n!}{(n-k)!} = n(n-1)\cdots (n-(k+1))</math> |
Revision as of 02:21, 14 August 2019
Let
be a set with
elements, and let
be a set with
elements.
| Description |
Set representing counting problem |
number of ways to count
|
|
 |
|
|
 |
|
|
 |
|
|
 |
|
|
 |
|
|
 |
|
|
|