User:IssaRice/Summary of counting techniques: Difference between revisions

From Machinelearning
No edit summary
No edit summary
Line 8: Line 8:
| || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A\}</math> || <math>\sum_{i=1}^k \binom n i</math>
| || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A\}</math> || <math>\sum_{i=1}^k \binom n i</math>
|-
|-
| || <math>\{\{a_1, \ldots, a_n\} : a_1,\ldots, a_n \in A\}</math> || <math>\sum_{i=1}^n \binom n i = 2^n - 1</math>
| || <math>\{\{a_1, \ldots, a_n\} : a_1,\ldots, a_n \in A\}</math> || <math>\sum_{i=1}^n \binom n i = 2^n - 1</math> (a quick way to see this identity is that we want the power set without the empty set)
|-
|-
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>P(n,k) = \frac{n!}{(n-k)!} = n(n-1)\cdots (n-(k+1))</math>
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>P(n,k) = \frac{n!}{(n-k)!} = n(n-1)\cdots (n-(k+1))</math>

Revision as of 02:32, 14 August 2019

Let be a set with elements, and let be a set with elements.

Description Set representing counting problem number of ways to count
Pick things from with replacement
(a quick way to see this identity is that we want the power set without the empty set)