User:IssaRice/Tao's notation for limits: Difference between revisions

From Machinelearning
No edit summary
No edit summary
Line 12: Line 12:


Why might one prefer one notation over the other? I think the strength of Tao's notation is that it works for anonymous functions/expressions. To be able to use the function restriction notation <math>f|_E</math>, we must have named our function beforehand. To give an example, we can write something like <math>\lim_{x\to 0;\, x\in (0,\infty)} |x|/x = 1</math>, but this is difficult to write in the other notation; we would have to say something like, "Let <math>f:\mathbf R\setminus \{0\} \to \mathbf R</math> be defined by <math>f(x) := |x|/x</math>. Then we have <math>\lim_{x\to 0} f|_{(0,\infty)}(x) = 1</math>."
Why might one prefer one notation over the other? I think the strength of Tao's notation is that it works for anonymous functions/expressions. To be able to use the function restriction notation <math>f|_E</math>, we must have named our function beforehand. To give an example, we can write something like <math>\lim_{x\to 0;\, x\in (0,\infty)} |x|/x = 1</math>, but this is difficult to write in the other notation; we would have to say something like, "Let <math>f:\mathbf R\setminus \{0\} \to \mathbf R</math> be defined by <math>f(x) := |x|/x</math>. Then we have <math>\lim_{x\to 0} f|_{(0,\infty)}(x) = 1</math>."
On the other hand, I think usually one would write the above like <math>\lim_{x\to 0+} |x|/x = 1</math>.

Revision as of 03:07, 1 December 2018

Tao's notation for a limit is limxx0;xEf(x).

Can we write this in a more standard way? basically, if we give one additional definition, we have the very appealing formula limxx0;xEf(x)=limxx0f|E(x).

The additional definition is this: if f:XR, then we define limxx0f(x):=limxx0;xXf(x). In other words, by default we assume that the limit is taken over the entire domain of the function.

Now, given f:XR and some EX, we have f|E:ER. Thus, limxx0f|E(x)=limxx0;xEf|E(x).

By exercise 9.4.6, limxx0;xEf(x)=limxx0;xEf|E(x)

Combining these two equalities, we have limxx0;xEf(x)=limxx0f|E(x) as promised.

Why might one prefer one notation over the other? I think the strength of Tao's notation is that it works for anonymous functions/expressions. To be able to use the function restriction notation f|E, we must have named our function beforehand. To give an example, we can write something like limx0;x(0,)|x|/x=1, but this is difficult to write in the other notation; we would have to say something like, "Let f:R{0}R be defined by f(x):=|x|/x. Then we have limx0f|(0,)(x)=1."

On the other hand, I think usually one would write the above like limx0+|x|/x=1.