User:IssaRice/Taking inf and sup separately: Difference between revisions

From Machinelearning
Line 14: Line 14:


===liminf vs limsup===
===liminf vs limsup===
(Notation from Tao's ''Analysis I''.)


Let <math>(a_n)_{n=m}^\infty</math> be a sequence of real numbers. Let <math>L^- := \liminf_{n\to\infty} a_n</math> and let <math>L^+ := \limsup_{n\to\infty} a_n</math>. Then we have <math>L^- \leq L^+</math>.
Let <math>(a_n)_{n=m}^\infty</math> be a sequence of real numbers. Let <math>L^- := \liminf_{n\to\infty} a_n</math> and let <math>L^+ := \limsup_{n\to\infty} a_n</math>. Then we have <math>L^- \leq L^+</math>.

Revision as of 22:57, 17 December 2018

This page describes a trick that is sometimes helpful in analysis.

Satement

Let and be bounded subsets of the real line. Suppose that for every and we have . Then .

Actually, do and have to be bounded? I think they can even be empty!

Proof

Let and be arbitrary. We have by hypothesis . Since is arbitrary, we have that is an upper bound of the set , so taking the superemum over we have (remember, is the least upper bound, whereas is just another upper bound). Since was arbitrary, we see that is a lower bound of the set . Taking the infimum over , we have , as required.

Applications

liminf vs limsup

(Notation from Tao's Analysis I.)

Let be a sequence of real numbers. Let and let . Then we have .

Consider the sequences and defined by and .

Now consider the sets and . If we can show that for arbitrary , then we can apply the trick to these sets to conclude that .

Lower and upper Riemann integral