Infinitely often and almost always: Difference between revisions

From Machinelearning
(Created page with "Let <math>A_1, A_2, A_3, \ldots</math> be a sequence of events in some sample space <math>\Omega</math>. {| class="wikitable" |- ! perspective !! infinitely often !! almost a...")
 
No edit summary
Line 7: Line 7:
| unions and intersections || <math>x \in \bigcap_{N=1}^\infty \bigcup_{n=N}^\infty A_n</math> || <math>x \in \bigcup_{N=1}^\infty \bigcap_{n=N}^\infty A_n</math>
| unions and intersections || <math>x \in \bigcap_{N=1}^\infty \bigcup_{n=N}^\infty A_n</math> || <math>x \in \bigcup_{N=1}^\infty \bigcap_{n=N}^\infty A_n</math>
|-
|-
| first-order quantifiers || <math>\forall N\geq 1\ \exists n \geq N \ x \in A_n</math> || <math>\exists N \eq 1\ \forall n \geq N\ x \in A_n</math>
| first-order quantifiers || <math>\forall N\geq 1\ \exists n \geq N \ x \in A_n</math> || <math>\exists N \leq 1\ \forall n \geq N\ x \in A_n</math>
|-
|-
| verbal expression
| verbal expression

Revision as of 21:11, 31 July 2019

Let A1,A2,A3, be a sequence of events in some sample space Ω.

perspective infinitely often almost always
unions and intersections xN=1n=NAn xN=1n=NAn
first-order quantifiers N1nNxAn N1nNxAn
verbal expression
lim sup/lim inf xlim supnAn xlim infnAn
limit of sup/inf xlimNsupn=NAn xlimNinfn=NAn