Infinitely often and almost always: Difference between revisions

From Machinelearning
No edit summary
No edit summary
Line 9: Line 9:
| first-order quantifiers || <math>\forall N\geq 1\ \exists n \geq N\colon \omega \in A_n</math> || <math>\exists N \leq 1\ \forall n \geq N\colon \omega \in A_n</math>
| first-order quantifiers || <math>\forall N\geq 1\ \exists n \geq N\colon \omega \in A_n</math> || <math>\exists N \leq 1\ \forall n \geq N\colon \omega \in A_n</math>
|-
|-
| verbal expression
| verbal expression || <math>\omega \in A_n</math> for infinitely many <math>n\geq 1</math> || <math>\omega \in A_n</math> for almost all <math>n\geq 1</math>, i.e. <math>\omega \in A_n</math> for all but finitely many <math>n \geq 1</math>, i.e. <math>\omega \notin A_n</math> for finitely many <math>n \geq 1</math>
|-
|-
| lim sup/lim inf || <math>\omega \in \limsup_{n\to\infty} A_n</math> || <math>\omega \in \liminf_{n\to\infty} A_n</math>
| lim sup/lim inf || <math>\omega \in \limsup_{n\to\infty} A_n</math> || <math>\omega \in \liminf_{n\to\infty} A_n</math>
|-
|-
| limit of sup/inf || <math>\omega \in \lim_{N\to\infty} \sup_{n=N} A_n</math> || <math>\omega \in \lim_{N\to\infty} \inf_{n=N} A_n</math>
| limit of sup/inf || <math>\omega \in \lim_{N\to\infty} \sup_{n\geq N} A_n</math> || <math>\omega \in \lim_{N\to\infty} \inf_{n\geq N} A_n</math>
|}
|}

Revision as of 21:16, 31 July 2019

Let A1,A2,A3, be a sequence of events in some sample space Ω.

perspective infinitely often almost always
unions and intersections ωN=1n=NAn ωN=1n=NAn
first-order quantifiers N1nN:ωAn N1nN:ωAn
verbal expression ωAn for infinitely many n1 ωAn for almost all n1, i.e. ωAn for all but finitely many n1, i.e. ωAn for finitely many n1
lim sup/lim inf ωlim supnAn ωlim infnAn
limit of sup/inf ωlimNsupnNAn ωlimNinfnNAn