User:IssaRice/Summary of counting techniques: Difference between revisions
No edit summary |
No edit summary |
||
| Line 4: | Line 4: | ||
! Description !! Set representing counting problem !! number of ways to count | ! Description !! Set representing counting problem !! number of ways to count | ||
|- | |- | ||
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A\}</math> || | | || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A\}</math> || <math>n^k</math> | ||
|- | |- | ||
| || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A\}</math> || | | || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A\}</math> || | ||
|- | |- | ||
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || | | || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>P(n,k) = \frac{n!}{(n-k)!} = n(n-1)\cdots (n-(k+1))</math> | ||
|- | |- | ||
| || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> | | || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>\binom n k = P(n,k)/(k!) = \frac{n!}{k!(n-k)!}</math> | ||
|- | |- | ||
| || <math>\{(a,b) : a \in A \text{ and } b \in B\}</math> || | | || <math>\{(a,b) : a \in A \text{ and } b \in B\}</math> || | ||
Revision as of 02:15, 14 August 2019
Let be a set with elements, and let be a set with elements.
| Description | Set representing counting problem | number of ways to count |
|---|---|---|