User:IssaRice/Summary of counting techniques: Difference between revisions

From Machinelearning
No edit summary
No edit summary
Line 4: Line 4:
! Description !! Set representing counting problem !! number of ways to count
! Description !! Set representing counting problem !! number of ways to count
|-
|-
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A\}</math> ||
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A\}</math> || <math>n^k</math>
|-
|-
| || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A\}</math> ||  
| || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A\}</math> ||  
|-
|-
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> ||
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>P(n,k) = \frac{n!}{(n-k)!} = n(n-1)\cdots (n-(k+1))</math>
|-
|-
| || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math>
| || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>\binom n k = P(n,k)/(k!) = \frac{n!}{k!(n-k)!}</math>
|-
|-
| || <math>\{(a,b) : a \in A \text{ and } b \in B\}</math> ||
| || <math>\{(a,b) : a \in A \text{ and } b \in B\}</math> ||

Revision as of 02:15, 14 August 2019

Let be a set with elements, and let be a set with elements.

Description Set representing counting problem number of ways to count