User:IssaRice/Summary of counting techniques: Difference between revisions

From Machinelearning
No edit summary
No edit summary
Line 6: Line 6:
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A\}</math> || <math>n^k</math>
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A\}</math> || <math>n^k</math>
|-
|-
| || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A\}</math> ||  
| || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A\}</math> || <math>\sum_{i=1}^k \binom n i</math>
|-
|-
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>P(n,k) = \frac{n!}{(n-k)!} = n(n-1)\cdots (n-(k+1))</math>
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>P(n,k) = \frac{n!}{(n-k)!} = n(n-1)\cdots (n-(k+1))</math>

Revision as of 02:19, 14 August 2019

Let be a set with elements, and let be a set with elements.

Description Set representing counting problem number of ways to count