User:IssaRice/Summary of counting techniques: Difference between revisions
No edit summary |
No edit summary |
||
| Line 6: | Line 6: | ||
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A\}</math> || <math>n^k</math> | | || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A\}</math> || <math>n^k</math> | ||
|- | |- | ||
| || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A\}</math> || | | || <math>\{\{a_1, \ldots, a_k\} : a_1,\ldots, a_k \in A\}</math> || <math>\sum_{i=1}^k \binom n i</math> | ||
|- | |- | ||
| || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>P(n,k) = \frac{n!}{(n-k)!} = n(n-1)\cdots (n-(k+1))</math> | | || <math>\{(a_1, \ldots, a_k) : a_1,\ldots, a_k \in A \text{ and all }a_i\text{ distinct}\}</math> || <math>P(n,k) = \frac{n!}{(n-k)!} = n(n-1)\cdots (n-(k+1))</math> | ||
Revision as of 02:19, 14 August 2019
Let be a set with elements, and let be a set with elements.
| Description | Set representing counting problem | number of ways to count |
|---|---|---|