Backpropagation derivation using Leibniz notation: Difference between revisions

From Machinelearning
No edit summary
No edit summary
Line 19: Line 19:
Putting all this together, we obtain
Putting all this together, we obtain


<math display="block">\begin{align}\frac{\partial C}{\partial w^l_{jk}} &= \frac{\partial C}{\partial a^l_j} \frac{\partial a^l_j}{\partial w^l_{jk}} \\ &= \left(\sum_{i=1}^{n(l+1)} \frac{\partial C}{\partial a^{l+1}_i} \frac{\partial a^{l+1}_i}{\partial a^l_j}\right) \sigma'(z^l_j)a^{l-1}_k \\ &= \left(\sum_{i \in \{1,\ldots,n(l+1)\}} \frac{\partial C}{\partial a^{l+1}_i} \sigma'(z^{l+1}_i)w^{l+1}_{ij}\right) \sigma'(z^l_j)a^{l-1}_k\end{align}</math>
<math display="block">\begin{align}\frac{\partial C}{\partial w^l_{jk}} &= \frac{\partial C}{\partial a^l_j} \frac{\partial a^l_j}{\partial w^l_{jk}} \\ &= \left(\sum_{i=1}^{n(l+1)} \frac{\partial C}{\partial a^{l+1}_i} \frac{\partial a^{l+1}_i}{\partial a^l_j}\right) \sigma'(z^l_j)a^{l-1}_k \\ &= \left(\sum_{i=1}^{n(l+1)} \frac{\partial C}{\partial a^{l+1}_i} \sigma'(z^{l+1}_i)w^{l+1}_{ij}\right) \sigma'(z^l_j)a^{l-1}_k\end{align}</math>

Revision as of 22:53, 8 November 2018

Throughout this page, let n(l) be the number of neurons in the lth layer of the neural network.

The cost function C depends on wjkl only through the activation of the jth neuron in the lth layer, i.e. on the value of ajl. Thus we can use the chain rule to expand:

Cwjkl=Cajlajlwjkl

We know that ajlwjkl=σ(zjl)akl1 because ajl=σ(zjl)=σ(k=1n(l1)wjklakl1+bjl). We have used the chain rule again here.

In turn, C depends on ajl only through the activations of the (l+1)th layer. Thus we can write (using the chain rule once again):

Cajl=i=1n(l+1)Cail+1ail+1ajl

Backpropagation works recursively starting at the later layers. Since we are trying to compute Cajl for the lth layer, we can assume inductively that we have already computed Cail+1.

It remains to find ail+1ajl. But ail+1=σ(zil+1)=σ(jwijl+1ajl+bil+1) so we have

ail+1ajl=σ(zil+1)wijl+1

Putting all this together, we obtain

Cwjkl=Cajlajlwjkl=(i=1n(l+1)Cail+1ail+1ajl)σ'(zjl)akl1=(i=1n(l+1)Cail+1σ(zil+1)wijl+1)σ'(zjl)akl1