Backpropagation derivation using Leibniz notation

From Machinelearning
Revision as of 23:02, 8 November 2018 by IssaRice (talk | contribs)

Throughout this page, let n(l) be the number of neurons in the lth layer of the neural network.

The cost function C depends on wjkl only through the activation of the jth neuron in the lth layer, i.e. on the value of ajl. Thus we can use the chain rule to expand:

Cwjkl=Cajlajlwjkl

We know that ajlwjkl=σ(zjl)akl1 because ajl=σ(zjl)=σ(k=1n(l1)wjklakl1+bjl). We have used the chain rule again here.

In turn, C depends on ajl only through the activations of the (l+1)th layer. Thus we can write (using the chain rule once again):

Cajl=i=1n(l+1)Cail+1ail+1ajl

Backpropagation works recursively starting at the later layers. Since we are trying to compute Cajl for the lth layer, we can assume inductively that we have already computed Cail+1.

It remains to find ail+1ajl. But ail+1=σ(zil+1)=σ(jwijl+1ajl+bil+1) so we have

ail+1ajl=σ(zil+1)wijl+1

Putting all this together, we obtain

Cwjkl=Cajlajlwjkl=(i=1n(l+1)Cail+1ail+1ajl)σ'(zjl)akl1=(i=1n(l+1)Cail+1σ(zil+1)wijl+1)σ'(zjl)akl1

Let us verify that we can calculate the right-hand side. We by induction hypothesis, we can calculate Cail+1. We calculate zil+1, zjl, and akl1 during the forward pass through the network. Finally, wijl+1 is just a weight in the network, so we already know its value.