Difference between revisions of "User:IssaRice/Computability and logic/Diagonalization lemma"

From Machinelearning
Jump to: navigation, search
(Comparison table)
(Comparison table)
Line 41: Line 41:
 
| Definition of diagonal function || <math>d(x) = \varphi_x(x)</math> || <math>\mathrm{diag}(\ulcorner C\urcorner) = \ulcorner C(\ulcorner C\urcorner)\urcorner</math>
 
| Definition of diagonal function || <math>d(x) = \varphi_x(x)</math> || <math>\mathrm{diag}(\ulcorner C\urcorner) = \ulcorner C(\ulcorner C\urcorner)\urcorner</math>
 
|-
 
|-
| Composition of given mapping with diagonal function (<math>\mathrm{given} \circ \mathrm{diagonal}</math>) || <math>f\circ d</math> || <math>A(\mathrm{diag}(x))</math>
+
| Composition of given mapping with diagonal function (<math>\mathrm{given} \circ \mathrm{diagonal}</math>) || <math>f\circ d(x)</math> || <math>A(\mathrm{diag}(x))</math>
 +
|-
 +
| || <math>f\circ d</math> || <math>B</math>
 
|-
 
|-
 
| Index of composition || <math>i</math> || <math>\ulcorner B\urcorner</math>
 
| Index of composition || <math>i</math> || <math>\ulcorner B\urcorner</math>

Revision as of 03:46, 8 February 2019

The diagonalization lemma, also called the Godel-Carnap fixed point theorem, is a fixed point theorem in logic.

Rogers's fixed point theorem

Let f be a total computable function. Then there exists an index e such that \varphi_e \simeq \varphi_{f(e)}.

(simplified)

Define d(x) = \varphi_x(x) (this is actually slightly wrong, but it brings out the analogy better).

Consider the function f\circ d. This is partial recursive, so f\circ d \simeq \varphi_i for some index i.

Now \varphi_{f(d(i))} \simeq \varphi_{\varphi_i(i)} since f\circ d \simeq \varphi_i. This is equivalent to \varphi_{d(i)} by definition of d. Thus, we may take e = d(i) to complete the proof.

Diagonalization lemma

(semantic version)

Let A be a formula with one free variable. Then there exists a sentence G such that G iff A(\ulcorner G\urcorner).

Define \mathrm{diag}(x) to be \ulcorner C(\ulcorner C\urcorner)\urcorner where x = \ulcorner C\urcorner. In other words, given a number x, the function \mathrm{diag} finds the formula with that Godel number, then diagonalizes it (i.e. substitutes the Godel number of the formula into the formula itself), then returns the Godel number of the resulting sentence.

Let B be A(\mathrm{diag}(x)), and let G be B(\ulcorner B\urcorner).

Then G is A(\mathrm{diag}(\ulcorner B\urcorner)), by substituting x = \ulcorner B\urcorner in the definition of B.

We also have \mathrm{diag}(\ulcorner B\urcorner) = \ulcorner B(\ulcorner B\urcorner)\urcorner by definition of \mathrm{diag}. By definition of G, this is \ulcorner G\urcorner, so we have \mathrm{diag}(\ulcorner B\urcorner) = \ulcorner G\urcorner.

To complete the proof, apply A to both sides of the final equality to obtain A(\mathrm{diag}(\ulcorner B\urcorner)) iff A(\ulcorner G\urcorner); this simplifies to G iff A(\ulcorner G\urcorner).

Comparison table

Step Rogers's fixed point theorem Diagonalization lemma
Theorem statement \varphi_e \simeq \varphi_{f(e)} G \leftrightarrow A(\ulcorner G\urcorner)
Given mapping f A
Definition of diagonal function d(x) = \varphi_x(x) \mathrm{diag}(\ulcorner C\urcorner) = \ulcorner C(\ulcorner C\urcorner)\urcorner
Composition of given mapping with diagonal function (\mathrm{given} \circ \mathrm{diagonal}) f\circ d(x) A(\mathrm{diag}(x))
f\circ d B
Index of composition i \ulcorner B\urcorner
Composition applied to own index (i.e. diagonalization of the composition) f\circ d(i) B(\ulcorner B\urcorner)
Explicitly showing previous composition f(d(i)) A(\mathrm{diag}(\ulcorner B\urcorner))
Renaming index e = d(i) \ulcorner G\urcorner = \mathrm{diag}(\ulcorner B\urcorner)
Leibniz law to previous row \varphi_e = \varphi_{d(i)} A(\ulcorner G\urcorner) \leftrightarrow A(\mathrm{diag}(\ulcorner B\urcorner))